Tools for Quantitative Archaeology |
BAYES, a program still under development (and not currently supported) is included in the package for those interested. The program implements Bayesian methods for proportions as described by Iversen (1984). The notation used in prompts and in output follows Iversen. Intervals are calculated and graphed for Bayesian estimates of proportions based on both flat (uninformative) and informative priors. Informative priors can be described by their mean and standard deviation of a Beta distribution.
PROGRAM EXAMPLE
Output File Name {CON} ? Create a Plot for a HPGL Plotter {N} ? Bayesian Estimates for Proportions [I]nformative or [F]lat Prior {F} ? I Prior Beta Distribution µ { 0.000} ? .3 Prior Beta Distribution s { 0.000} ? .2 Sample n {0} ? 10 Sample x {0} ? 2 Sample n = 10 Sample x = 2 Prior a' = 1 Prior b' = 3 C' = 3.000E+00 Post a" = 3 Post b" = 11 C" = 8.580E+02 Prior µ' = 0.300 Prior s' = 0.200 Post µ" = 0.214 Post s" = 0.106 Print Bayesian Probability Intervals {Y} ? Y Resolution of p (.001 - .01) {0.010} ? Bayesian Probability Intervals 100% Tail Interval ---------------- ------------------------------------------ Level p0 P(p<=p0) p1 p2 P(p1<=p<=p2) f(p1) f(p2) 0.01 0.040 0.014 0.170 0.180 0.038 3.847 3.821 0.05 0.070 0.058 0.160 0.180 0.077 3.842 3.821 0.10 0.090 0.105 0.150 0.180 0.115 3.801 3.821 0.20 0.130 0.234 0.140 0.200 0.228 3.722 3.685 0.25 0.140 0.270 0.130 0.200 0.265 3.602 3.685 0.50 0.210 0.535 0.100 0.240 0.503 2.992 3.177 0.75 0.280 0.751 0.070 0.310 0.761 2.035 2.017 0.80 0.310 0.819 0.060 0.330 0.816 1.664 1.703 0.90 0.360 0.900 0.040 0.380 0.910 0.913 1.040 0.95 0.420 0.957 0.030 0.430 0.957 0.569 0.574 0.99 0.510 0.991 0.000 0.990 1.000 0.000 0.000 Display Plot {Y} ? Program End
Home | Top | Overview | Ordering | Documentation |
Page Last Updated - 02-Jun-2007