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INTRASITE SPATIAL ANALYSIS: A COMMENTARY 
ON MAJOR METHODS 

Keith W. Kintigh 

INTRODUCTION 

There is a large and fertile literature concerned with quantitative methods of spatial 
analysis in archaeology. My assessment of the state-of-the-art in spatial analysis focuses on 
several themes: the scale and significance of patterning, the role of models in spatial 
analysis, and absolute and relative indices of patterning. In this context, I hope to provide 
new insights on prominent techniques. While I provide a brief description of the methods 
and citations of the primary literature, I assume the reader to be generally familiar with 
them. 

Before proceeding, it may be useful to step back and consider why there has not been 
more impact of quantitative techniques of spatial analysis on the field at large. Of the 
many reasons that might be offered, I focus on three: the irrelevance, the perceived 
impotence, and the lack of convenient access to computational procedures that can execute 
available methods. 

Since much of the quantitative literature of intrasite spatial analysis focuses on the 
analysis of more or less intact living surfaces, it is in fact not particularly relevant to the 
needs of the many archaeologists whose data consist mainly of trash deposits from longer- 
term habitations. Important work has been done to deal with such data (notably that of 
Cowgill et al. 1984). but much more research is warranted. In this paper, however, I will 
not cover the analysis of these kinds of data sets. 

But what of the perceived failure of the methods to deal with data from living 
surfaces? Other soul-searching on this topic (Clarke 1977, Kintigh and Ammerman 1982, 
Whallon 1984, Carr 1984, 1985, 1987) has led researchers to argue that our methods lack 
congruence with our substantive problems and with the archaeological record. Generally 
following from these arguments is the proposal of a new and purportedly better technique. 
Indeed, it appears that most of the novel spatial analysis techniques created in the last ten 
or fifteen years derived from dissatisfactions with available methods. 

As mentioned above, the lack of access to computer programs to perform these 
analyses has been a major deterrent to the use of quantitative methods. The lack of 
availability of spatial analysis software has, less obviously, retarded the general level of 
understanding of these techniques, and as consequence, the desire to apply them. The 
ubiquity of microcomputers and the ease of distributing working software for these 
relatively standard machines has the potential to bring sophisticated methods of spatial 
analysis into the hands of most interested archaeologist. All analyses performed for this 
paper, for example. were executed on an IBM PC-compatible microcomputer with geneni- 
purpose software written by the author. 

Given this emphasis during the last decade of research, where are we now? Clearly, 
all the basic problems are not under control. Nonetheless. I contend that not only have we 
made progress, but also that through thoughtful use of available techniques, it is possible 
to gain useful insights into spatial distributions of artifacts. 

THE MASK SITE 

The arguments presented in his  paper were not developed thinking about spatial 
analysis in the abstract, but were formulated in the context of analyzing archaeological 
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Figure I .  Distribution of artifacts at the Mask Sile. r=tools, r=projectiles, w=wood scrap, ~=iarge  
bone, b=bone scrap. 

data. On the assumption that data-based arguments are easier to comprehend and more 
persuasive, I continually present illustrative results of spatial analyses. I use spatial data 
fiom the Mask Site, an Eskimo camp site (Binford 1978) that is thoroughly reported 
ethnoarchaeologically. In addition, Whallon (1984) has already performed and published 
h e  results of the data screening that should precede any quantitative analysis (see Whallon 
1987) and has published an extensive unconstrained clustering analysis of the artifact 
distributions. Following Whallon, Lhc artifact disuibutions will be treated as if they were 
from an archaeological site. 

At the Mask Site, Binford recorded the exact locations of 490 artifacts spread over a 
9m x 12m area. In my analyses, I use the five classes of artifacts used by Whallon: tools, 
projectile components (caruidge casings), wood scrap, large bone, and bone scrap. The 
distributions of these artifact classes are shown in Figure 1. As Whallon generously 
provided me with his digitized artifact locations, my analyses are based on the same data 
as were his. 

Several points concerning the spatial patterning at Lhe Mask Site were observed by 
Binford. Bone scrap was generally dropped by men seated around one of the three major 
hearth areas. Larger bone elements were tossed over the shoulders of these men, forming a 
scatter peripheral to the intensively used part of the site. Carving was localized in two 
areas, and target shooting in a single area away from the hearths. Tools, labeled "artifacts" 
by Binford, were clustered in areas peripheral to the main areas of activity, including the 
area near the center of the site next to bouldcrs. 
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Figure 2.  Mask Sire tools and projectile components. R,=1.38, R,=4.M. A=O.34, C=0.39. 
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When analyzing a spatial distribution, a question that seems often to come to mind is 
whether, in some absolute sense, a distribution exhibits any patterning? The logic implicit 
in this question is that a null hypothesis of no patterning should be examined, and that 
sigmficant observable patterns may be related to the cultural or depositional processes 
responsible for the archaeological mcord. While the question seems straightforward, the 
answer, most assuredly, is not 
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Nearest-neighbor analysis 

Perhaps the most common way in which this question is operationalized is to compute 
the nearest-neighbor coefficient and. perhaps. test its statistical significance (Clark and 
Evans 1954, Whallon 1974). The nearest-neighbor coefficient R is defined as the ratio of 
the average over all points of the distances between a point and the nearest other point, 
divided by the average distance that would be expected if the same number of objects 
were distributed at random over the same area. A random distribution of points will yield 
a nearest-neighbor value near 1.0;. a clustered distribution will yield a value less than 1.0, 
down to the limit of zero; and a distribution in which the objects are more evenly 
distributed than would be expected at random will produce a value greater than 1.0, up to 
the limit of about 2.15. 
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Figure 3. Mask Site bone scrap. R=0.41. 

The nearest-neighbor coefficient is an index or indicator of the patterning of a 
distribution. As it is normally used, this measure is both global and absolute. It is global 
in that it indicates patterning in the entire distribution of points rather than the patterning 
in some local area within the distribution. It is absolute in that it compares the coefficient 
for the distribution against an absolute standard of randomness. 

While the nearest-neighbor coefficient appears reasonable enough, there are several 
serious objections to its use (Hodder and Onon 1976, Pinder et al. 1979). First. the 
nearest-neighbor coefficient is plagued with what are known as "boundary problems". One 
aspect of the boundary problem is that in archaeological situations it is often not altogether 
clear where exactly the boundary of the site is. For the Mask Site, let us assume that we 
have excavated the 9m x 12m area shown in Figure 1. Is the area of the site simply the 
9m x 12m (108mZ) area, or might we define it more restrictively, perhaps by excluding 
any empty l m  x lm grid square on the edge, an area of 65m2? 

For al l  490 artifacts recorded for the Mask Site, the nearest-neighbor coefficient is 
0.61 when considered within a 9m x 12m (108m3 area, and 0.79 for the more restricted 
65m2 area. While both values indicate clustering, there is a substantial difference in the 
degree of clustering indicated. If the analysis is performed only on the 52 tools, together 
with projectiles (Figure 2), then the 108mZ area yields a value of 0.82, indicating some 
clustering, whereas with the 65m2 area the nearest-neighbor coefficient is 1.05, indicating 
an approximately random distribution. In many situations, especially those in which one is 
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Figure 4 .  Artificial data with 271 points. R=0.41. 

trying to deal with an entire site, Ihe interpretation of the coefficient as an absolute 
measure is problematic. 

Another problem with nearest-neighbor analysis for assessing absolute patterning is 
more basic. What nearest-neighbor analysis measures as clustering is not equivalent to our 
intuitive notions for the spatial clustering of artifacts. The distribution of 271 pieces of 
bone scrap at the Mask Site shown in Figure 3 would generally be regarded as clustered, 
and, for the 108 rnZ area, the nearest-neighbor coefficient of 0.41 indicates strong 
clustering. While the distribution shown in Figure 4 has the same number of points, it 
does not appear strongly clustered; yet it has the same nearest-neighbor coefficient. 

How is this discrepancy explained? An every-day perception of the clustering of 
artifacts has to do with having a relatively small number of relatively discrete groups of 
artifacts-the distributions of projectiles, wood (Figure 5) .  and bone scrap Figure 3) are 
particularly clear-cut in this regard. However, the data that enter into the nearest-neighbor 
analysis are only the area, the number of points, and the distribution of distances from 
each point to its nearest neighbor. In Figure 4, the points are paired, so that each point 
has a relatively close neighbor, but the pairs are not frequently close to other pairs. For 
both the bone scrap and this anificiai data, the average distance from a point to the 
nearest other point is 13 cm. The information that the bone scrap has three major groups 
of points while the artificial data has perhaps two hundred groups, is not a factor in 
nearest-neighbor analysis. 
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Figure 5 .  Mask Site projectile components and wood scrap. Rel .15. R,=1.25, A=0.66, C=10.66. 
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Although some remedies to boundary problems have been proposed (Hodder and 
Orton 1976, Pinder et al. 1979). they are not altogether satisfactory and require substantial 
effort to apply. The boundary problem, when coupled with the fact that the nearest-neigh- 
bor coefficient may be a substantively misleading measure of clustering, seem sufficient to 
say that the nearest-neighbor coefficient is not an appropriate absolute indicator of global 
parteming of artifacts. 

-- 
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However, as others have suggested (Hivemel and Hodder 1984:100), nearest-neighbor 
analysis may be used cautiously as a measure of relative patterning of different classes of 
artifacts. Thus, if we examine the artifact classes separately (Table 1). the nearest-neighbor 
coefficients can be compared wilh each other. It can be shown algebraically that for 
boundaries with areas Ai and A,, the nearest-neighbor coefficient for one area, R(Ai), can 
be expressed as a simple function of the ncarest-neighbor coefficient for the other area, 
R(A,), 
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Thus, in Table 1, the nearest-neighbor values using a 65 m2 area are simply 1.3 times the 
values in the first column. 
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Tool 52 0.82 1.05 
Projectile 82 0.23 0.30 
Wood Scrap 57 0.16 0.21 
Large Bone 28 0.43 0.56 
Bone Scrap 27 1 0.41 0.53 

While this is not particularly useful al l  by itself, it means that the ratios of the 
nearest-neighbor coefficients of two different tool types are the same, no matter what area 
is used in the calculations, as long as it includes all the points. The nearest neighbor 
coefficient for tools is about twice that of bone scrap, with either area. What is often the 
largest component of the boundary problem, the size of the area included in the site, is 
not an issue when examining the ratio of the coefficients for two artifact classes. 

As a consequence, without reference to the absolute nearest-neighbor scale centered 
about 1.0 we can say that the distribution of projectiles, is more clustered than that of the 
tools (Figure 2). and the distribution of wood scrap is the most clustered. However, even 
with these relative statements, we must bear in mind that we are using the nearest- 
neighbor measure of clustering ha t  is not isomorphic with the every-day meaning of 
clustering. While caution is required in interpreting results of this kind. nearest-neighbor 
analyses of separate artifact ciasses may well be useful relative indicators of the degree of 
global patterning displayed by different classes. 

The foregoing discussion suggests a way to standardize the nearest-neighbor coeffi- 
cients in order to compare them for different artifact classes. First. as mentioned above, 
one can simply look at their ratios. These ratios can be displayed in the form of a 
symmetric matrix (Table 2). The standardized value, then, is simply the ratio of the row 
variable to the column variable. For example, the neighbor coefficient of tools is 3.56 
times that of projectiles, e.g., tools are much less clustered than projectiles, but the 
nearest-neighbor coefficients of large bone and bone scrap are approximately equal. 

TABLE 2. RATIOS OF NeARESF-NEIOHDOR CODFlClP.NTS, ROW NEIU1EST-NEIOHBOR COEmCIl?NT DNIDED BY COLUMN 

Tool 52 0.82 1.00 3.56 5.13 1.91 2.00 
Projectile 82 0.23 0.28 1.00 1.44 0.53 0.56 
Wood Scrap 57 0.16 0.20 0.70 1.00 0.37 0.39 
Large Bone 28 0.43 0.52 1.87 2.69 1 .oO 1.05 
Bone Scrap 271 0.4 1 0.50 1.78 2.56 0.95 1 .OO 

Tool hjectile Wood Scrap Large Bone Bone Scrap 
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What is the significance of these relative results? Tmditional tests allow us to assess, 
for relatively large numbers of points, the significance of the difference between a nearest 
neighbor value and the random standard of 1.0 (Whallon 1974). However, I have 
suggested that comparisons with the absolute scale are rarely warranted. Also, one might 
question whether such a test is tenibly meaningful, even if mathematically correct (Doran 
and Hodson 197558). 

It is possible to evaluate a more useful question having to do with the significance of 
the relative results. Assume that the locations of artifacts at the site are taken as given. 
Consider the 82 projectiles (Figure 2). One might ask whether the distribution of artifacts 
in this class is more clustered than that of 82 locations drawn at random (without 
replacement) from the 490 actual artifact locations at the site. This is essentially asking 
whether the projectile artifact class is significantly clustered relative to the locations of all 
artSfacts at the site. 

In order to assess the significance of that difference using Monte Carlo methods, we 
need to know how frequently a value as low, or as high, as that of the actual data would 
be obtained by chance. Here the parameters of the distribution of R-values, calculated for 
randomized data, are of interest. The actual nearest-neighbor coefficient for projectiles, 
0.23, is about 6 standard deviations below the mean of that distribution of 0.62. Thus, the 
nearest-neighbor clustering of the projectiles is highly significant relative to that of all 
artifact locations. 

In previous sections, variations on nearest-neighbor analysis were used to indicate the 
relative degree of clustering of different artifact classes, when considered independently of 
other artifact class point distributions. It is also possible to use nearest-neighbor-based 
methods to measure the spatial association or segregation of pairs of types. Whallon 
(1974) proposed a graphical shared-area measure of spatial association. Hanson and 
Goodyear (1975) have proposed a related graphical technique based the number of shared 
artifacts rather than shared area (see also Clark 1979). 

Use of a class-constrained variant of nearest-neighbor analysis as an indicator of class 
association or segregation was suggested lo me by Jcffrey Parsons and is described here. 
In this analysis, the nearest-neighbor of a point of the first type is constrained to be a 
point of the second type. The expected nearest-ncighbor distance is determined from the 
density of points in the second anifact class, which is the number of candidate points for 
the nearest-neighbor. The nearest-neighbor coefficient between two classes is the ratio of 
the mean observed nearest-neighbor distance for points of the first class, as defined above, 
divided by the expected nearest-neighbor distance of the points of the second class. 

Tool 52 0.82 4.85 3.51 1.46 2.82 
Projectile 82 1.38 0.23 1.15 0.53 1.37 
Wood Scrap 57 1.80 1.25 0.16 0.99 1.01 
Large Bone 28 1.02 3.12 3.27 0.43 1.50 
Bone Scrap 271 0.94 3.42 2.60 0.98 0.4 1 

Tool Projcctilc Wood Scrap Large Bone Bone Scrap 
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Figure 6. Mask Site projectile components and large bone. R,,=OJ3, R,=3.12. A=0.44. C=358.  

Between-class nearest-neighbor coefficients are presented in Table 3. Several observa- 
tions can be made about this table. First, as we would expect the diagonals of the matrix 
are the within-class nearest-neighbor coefficients. Second, a pair of types with values near 
1.0 are interpreted as randomly intermingled, values less than 1.0 are interpreted as 
spatially aggregated, and values greater than 1.0 are interpreted as spatially segregated. 
However, the between-class nearest-neighbor coefficients do not have an upper bound as 
do within-class coefficients. Third, and perhaps not so obvious, the matrix is not syrnmet- 
ric. Consider the relationship between projectile and large bone, RpB is 0.53, whereas R, is 
3.12. This says that the observed distances from projectiles to large pieces of bone are 
about half of what would be expected given the overall number of pieces of bone, but the 
distance from large bones to projectiles is more than three times than would be expected 
given the overall number of projectiles. 

These results. which may seem paradoxical, can be understood with reference to 
Figure 6 which shows that all projectiles have nearby bones. but many bones have no 
nearby pmjecfiles. Thus, based on the first nearest-neighbors, bones might be said to be 
largely segregated from projectile locations, while projectiles are concentrated near large 
bone pieces. 

As absolute measures of clustering, nearest-neighbor coefficients are plagued by 
boundary problems. However, because Lhey can be compared with one another in ways 
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that are independent of the boundary of an area, nearest-neighbor coefficients can be 
useful measures of the relative patterning of different subsets of points. Using Monte Carlo 
methods it is possible to assess the significance of the difference between the coefficient 
for the actual locations of points of a class with the expected value of the coefficient 
under the hypothesis of a random assignment of artifact locations. Finally, the between- 
class nearest-neighbor coefficient can be used as an indicator of aggregation or segregation 
in the locations of artifacts of different classes. 

However, the nearest-neighbor coefficient is still an index of global patterning. 
Because it is a global index, local clustering in one part of a spatial dismbution of points 
may be masked by uniformity in another part of the distribution (Hietala 1984b:44-45). 
Furthermore, as the index is dependent solely on the nearest-neighbor distances, the pattern 
indicated may not correspond to intuitive or archaeologically meaningful notions. 

Hodder and Okell's A 

There seem to be fundamental inadequacies of nearest-neighbor distances for the 
identification of spatial clustering and spatial aggregation. The first nearest-neighbor 
distances of artifacts may not be good indicators of culturally interpretable clustering. 
Hodder and Okell (1978) and Hivemel and Hodder (1984) address this problem by 
formulating a measure of the spatial association of two artifact classes that uses not only 
the first nearest-neighbor distances, but also incorporates the distance from each point to 
every other point in the distribution, both of the same and the other artifact class. 

Hodder and Okell's A is a global index that is computed directly from a matrix of 
intertype distances. An intertype distance is the mean distance from every point of one 
class to every point of the other class, presented for the Mask Site in Table 4. It should 
be noted that these values are simply distances, here measured in meters. Also, the mamx 
is symmetric. that is, the distance from tools to wood scrap is the same as the distance 
from wood scrap to tools. The values along the diagonal of the matrix are the distances 
from points of one type to points of the same type, and are the mean within-type 
distances. Thus, the average distance from a piece of wood scrap to another piece of wood 
scrap is 1.56 m, whereas the average distance from a tool to wood scrap is 4.09 m. While 
these numbers may have some inherent interest, they are not scaled in a way that the 
degree of clustering or aggregation can be inferred directly. 

Hodder and Okell propose a coefficient, labeled A, of aggregation, or spatial associ- 
ation, and segregation, or spatial disassociation, of artifact classes. This coefficient for two 
artifact classes is defined as the product of the two mean intratype distances divided by 
the square of the mean intenype distance. A value of about 1.0 indicates that the 
distributions of the two types are spatially intermingled; the two types tend to occur and 
not occur in the same places. Values less than 1.0 indicate spatial segregation; the two 

Tool 52 4.73 4.61 4.09 4.55 3.96 
Projectile 82 4.61 1.54 1.91 3.80 3.60 
Wood Scrap 57 4.09 1.91 1.56 3.53 3.01 
Large Bone 28 4.55 3.80 3.53 4.14 3.65 
Bone Scrap 271 3.96 3.60 3.01 3.65 2.94 

Tool Projcctile Wood Scrap Large Bone Bone Scrap 
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Figure 7.  Mask Site lools and large bone. R,=1.46, R,=1.02. A=0.95,  C=1.04 .  

types tend to appear in separate places; I would expect values greater than 1.0 to be 
empirically rare. 

To understand this behavior, imaginc two separate clusters each composed exclusively 
of a separate type. The intratype distances will be small, yielding a small numerator in the 
A ratio, whereas the intertype distances will be large, yielding a large denominator. The 
resulting ratio will be quite small, indicating extreme segregation. When two distributions 
are intermingled, the mean inmtype distances for both types, that is, the average distance 
from a point of one type to all other points of the same type, will be about the same as 
the mean intertype distance producing an A value of about 1.0. 

Hodder and Okell's A values for the Mask Site are presented in Table 5. Tools and 
projectiles (Figure 2) have the lowest A, 0.34, indicating strong segregation. Tools and 
large bone pieces (Figure 7) have the highest A, 0.95, indicating near complete inter- 
mingling. These results may be usefully compared with those obtained from the between- 
class nearest-neighbor analysis. The between-class nearest-neighbor coefficient between 
tools and projectiles is 1.38; between projectiles and tools it is 4.85. The nearest-neighbor 
coefficients between tools and large bone is 1.46; between large bones and tools it is 1.02. 
While both analyses provide intuitively reasonable results; the nearest-neighbor analysis, at 
least in this case, seems to me the more informative as it  provides intuitively satisfying 
information on what amounts to two dimensions of segregation. 
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Hodder and Okell have proposed significance levels for A for different degrees of 
class mixing for various sample sizes based on simulations of mixing in artificial 
distributions. I suggest another method. Use of the Monte Carlo method I proposed for the 
analysis of nearest-neighbor significance would seem appropriate for the evaluation of the 
significant differences from a completely intermingled situation (A=1.0). Further, this 
method suits the philosophy of exploiting the locational information in the distribution to 
reduce extraneous effects. 

Evaluation of the significance of A requires the assessment of the likelihood of 
obtaining by chance values of A as extreme as those in an empirical situation. Using the 
method I propose, the artifact class assignments of the points in the original distribution 
are randomized with the constraint that the same number of points is assigned to each 
class as exist in the original distribution. While this does not change the point locations, 
the spatial arrangements of the types within the distribution are randomized, and, in 
general. intermingled. 

The question then is, are values of A as low as the empirical values given in Table 5 
likely to be obtained by chance arrangements of the same number of points of each type 
at the same locations. By repeatedly randomizing the artifact type assignments of the 
points, this likelihood can be assessed objectively. With 500 such randomizations, the 
mean value, to two decimal places, of each A was 1.00, and standard deviations were 
never greater than 0.03. 

That values of A for the points with randomized type assignments all converge to 1.0 
indicates that the observed deviations in A from 1.0 are not due to variations in the 
number of points of each type or to the patchy overall distribution of points. Further, an 
examination of the standard deviations from this Monte Carlo analysis shows that only one 
empirically observed A, that for tools and iargc bone (0.95), is within two standard 
deviations of the mean obtained with the randomized data. All other A values can be taken 
to differ significantly from the cxpectcd value of 1.00. 

HODDER AND OKELL'S A, CONCLUDINCi REMARKS 

Although Hodder and Okell's A is a global index of clustering, it has the advantage 
of being an absolute measure that is not depcndent on the boundary of an area. This 
measure is scale independent because it essentially takes the artifact locations as given and 
evaluates the degree to which the artifact types are spatially intermingled. The Monte 
Carlo analyses suggest that it provides a powerful measure for distinguishing segregated 
dismbutions from the intermingled ones that would be expected under conditions of 
random spatial location, or of close spatial association of artifact types. 

Tool 52 1.00 0.34 0.44 0.95 0.89 
Projectile 82 0.34 1.00 0.66 0.44 0.35 
Wood Scrap 57 0.44 0.66 1.00 0.52 0.5 1 
Large Bone 28 0.95 0.44 0.52 1.00 0.9 1 
Bone Scrap 271 0.89 0.35 0.5 1 0.9 1 1.00 

Tool Projcctilc Wood Scrap Large Bone Bone Scrap 
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Hodder and Okell's A and the between-class nearest-neighbor coefficient occupy 
opposite ends of a continuum. A is a function of all neighbor distances, while the 
between-class nearest neighbor coefficient is based only on first nearest-neighbor distances. 
Both may provide useful information about a distribution, but neither seems to be a 
sufficient measure of spatial association. 

Local density analysis 

Local density analysis, proposed by Johnson (1976, 1984; also discussed by Graham 
1980) provides an absolute, global measure of artifact class association that considers 
interpoint distances only within a fixed radius of each point, indicating patterning at a 
certain scale. The local density coefficient C,,,,, is the mean density of points of type j in 
the neighborhood of points of type i, divided by the global density of type j points. To 
calculate this measure, each point of type i is considered in turn. The local density of 
points of type j for a given i point is the number of points, M,j, of type j that are found 
within a fixed radius r of the subject point divided by the area of the neighborhood. x?. 
The global density of type j points is simply the total number of type j points (N,) divided 
by the area of the site (A). 

For the Mask Site the symmetric matrix of local density coefficients for a Im radius 
is presented in Table 6. Local density coefficient values about 1.0, such as between tools 
and large bone (Figure 7, C=1.04) indicate that there is no aggregation or segregation of 
the types at this scale of analysis, i.e., the average actual and expected densities are about 
the same. For the Mask Site, the average number of large bones found within a meter of 
each tool is about the same as the number one would expect if the large bones were 
randomly distributed. 

A value greater than 1.0 indicates spatial association of the two types. For projectiles 
and large bones (Figure 6). the local density coefficient of 3.58 indicates that an average 
of more than three times as many large bones are found in the neighborhood of projectiles 
as would be expected at random. Local density coefficients less than 1.0 indicate segrega- 
tion of the types. Mask Site tools and projectiles (Figure 2). for which C=0.39, are highly 
segregated. Indeed, only about 40% of the number of projectiles are found in the 1.0m 
radius neighborhood of tools. The local density coefficient of a point type with itself is 
similarly interpreted. Except for very small numbers of points or situations in which 
boundary problems, to be discussed below, come into play, values of intratype coefficients 
substantially less than 1.0 should not occur. 

BOUNDARY PROBLEMS WITH THE LOCAL DENSITY COEFFICIENT 

Because the local density coefficient is a global measure that is dependent on the site 
area, it can be expected to have some boundary problems. To the extent that fixed-radius 

TABLE 6. Locu DWIM c o m c m m  A ~ G I I B O R I I O O D  RADIUS w 1.0 M PMI THE MASK Sm. 

Tool 52 2.87 0.39 0.01 1.04 2.63 
Projectile 82 0.39 15.22 10.78 3.58 0.86 
Wood Scrap 57 0.01 10.78 25.46 1.27 2.32 
Large Bone 28 1.04 3.58 1.27 2.46 1.78 
Bone Scrap 271 2.63 0.86 2.32 1.78 5.28 

Tool Projectile Wood Scrap Large Bone Bone Scrap 
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Figure 8. Mask Site intrarype local density plot. 

neighborhoods around points extend beyond the boundary of the site, the local density 
coefficient will be numerically depressed, because a global density computed on the site 
area will be too high If the site boundary is enlarged to accommodate all points plus their 
neighborhoods. the global density will be unrealistically low and the local density 
coefficients will be elevated. 

LOCAL, DENSllY ANALYSIS AS A RElATIVE MEASURE 

A u s e l l  approach to the boundary problem is to view the local density coefficient in 
a relative framework, much as was suggested above for nearest-neighbor analysis. It is 
easily shown that, for a given neighborhood radius r, the local density coefficient 
computed for one area is related in a simple way to the coefficient computed using a 
second area and it can be shown ba t  h e  ratio of two local density coefficients is 
independent of the site area. Thus, one can compare coefficients to one another without 
regard for the site area. For a Im radius neighborhood, projectiles and large bones 
(Figure 6.  C=3.58) are more strongly aggregated than are tools and large bone (Figure 7, 
C=1.04). 

The Monte Carlo method described above can be used to derive significance levels for 
local density coefficients. That is, taking the point locations as given, but repeatedly 
randomizing the assignment of point types to locations will provide an assessment of the 
likelihood of obtaining, by chance, a coefficient at least as extreme as the actual value. 
While this analysis has not been fully canicd out, limited Monte Carlo experimentation 
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hints at an interesting result. It appears that randomized point type assignments result in 
all local density coefficients in the matrix tending to the local density coefficient obtained 
in an analysis in which the entire distribution of points is considered as being of one type. 
This result seems sensible and is directly analogous to the results of the Monte Carlo 
analysis of the within-class nearest-neighbors. 

LOCAL DENSlTY ANALYSIS AND PATTERNING AT DIFFERENT SCALES 

Because the local density coefficient is dependent on the specification of the neighbor- 
hood radius, it allows us to examine patterning at a specific scale. In a sense, it occupies 
an intermediate position between a nearest-neighbor analysis and Hodder and OkeU's A 
which amounts to an all-neighbor analysis. This seems advantageous, as behavioral notions 
of spatial patterning are scale dependent. 

Examining the results of local density analyses performed for a range of neighborhood 
radii can reveal information about the scale, or scales, of patterning of artifact classes or 
pairs of classes. Because each analysis yields an entire matrix of coefficients, a convenient 
method of evaluating the information is needed. One obvious method is to plot the 
coefficients against the neighborhood radii. For example, Figure 8 shows the inuatype 
coefficients for the Mask Site plotted against neighborhood radii from 0.2m to 6m. In 
these plots, local density coefficients greater than the maximum values on the vertical axes 
are not shown. The objective of examining these plots is to compare behavior of the 
coefficients for the different artifact class combinations and to identify critical radii. 

Graham (1980:llO) illustrates expected shapes for these plots in three ideal cases. 
However, analysis of the Mask Site data and artificial data indicate that the interpretation 
of these plots is less straightforward than Graham's discussion suggests. A distribution in 
which most points are concentrated in a single dense cluster, such as Mask Site projectiles 
or wood (Figure 5). shows high local density values at the small radii that fall off to a 
value near 1.0 as the radius increases (Figure 8). Because these types are so clustered, 
even at very small radii the average number of anifacts of the same type in the neighbor- 
hood is extremely high relative to the expected number. 

For wood, increasing radius from about 1.5m up to about 5m includes more area, and 
hence a greater expected number of pieces without increasing the observed number of 
artifacts within the neighborhood at all, so the local density coefficient gradually decreases. 
For projectiles, however, as the radius increases from about Im to 3m, the neighborhoods 
around the projectiles in each of the two large clusters incorporate projectiles from the 
other cluster, so the coefficient declines less rapidly than that of the wood. 

Further examination of Figure 8 shows that all the inuatype coefficients have the 
same general shape. They reach their highest values at the smallest radius computed and 
then decrease as the radius increases. The local density coefficient for bone scrap (Figure 
3). which is concentrated in large and rather more sparse clusters, is only moderately high 
for small neighborhoods, and decreases only slowly over the range of radii. While shape 
alone is not a clear-cut indicator of the kind of clustering exhibited by a set of points, it 
is notable that projectiles and wood, clearly the most clustered of the types, have the 
highest local density coefficient across the range of radii considered. 

Graham indicates that several widely separated and evenly spaced clusters result in 
curves with local density coefficients that an: high at small radii which correspond to the 
small clusters. then dip below 1.0 at intermediate radii, then increase again as the 
neighborhood radii begin to include points in other clusters, and then gradually decline 
again to near 1.0 at large radii. Figure 9 and Figure 10 show two artificial distributions of 
points that were generated in an identical manner, but with different densities. Both are 
strongly clustered, yet their intratype local density coefficient plots have different shapes 
(Figure l l ) ,  and the shapes are markedly different from the ideal suggested by Graham. 
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Figure 9.Artjficial data, 82 points of type P.  
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Figure 11. Local density plot for artijicial disfributions of type P and b points. 
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Figure 12. Mask Site intertype local density plot. 
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Figure 14. Mask Site tools and wood scrap. R,=351, R,=1.80, A=0.44, C=O.OI. 
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Figure 13. Mask Site wood scrap and large bone. R,=0.99, R,,=3.27, A=O52, C=1.27. 
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The intertype coefficients display a different set of behaviors. The most obvious aspect 
of Figure 12, which displays all intertype coefficients for the Mask Site, is that over 
almost the entire range of radii, the projectile-wood local density coefficient is very much 
greater than any other. Examination of Figure 5 shows that both types appear in dense 
clusters, and that a large fraction of points of each type is within lm or 2m of a large 
portion of points of the other type. 

Another interesting pattern is shown by the wood-large bone (Figures 12, 13) 
coefficient, which is relatively high, about 2.0, at a radius of 0.2 m, drops quite low, 
below 1.0, at a radius of 0.8 m, rises above 2.0 again at a radius of about 1.6 m, and 
then gradually falls off. This unusual behavior seems to be due to a tight concentration of 
several pieces of wood and large bones and by a ring of large bone pieces about a meter 
distant from a dense cluster of wood pieces. 

Like Hodder and Okell's A, but unlike the between-class nearest-neighbor coefficient. 
the local density coefficient between artifact types is symmetric. Thus, only a summary 
measure of aggregation or segregation can be obtained. It is not possible to distinguish 
asymmeuic associations from ones in which the spatial associations are mutual. For 
example, projectiles all have nearby bones, but many bones do not have nearby projectiles 
(Figure 6). The ambiguity of the situation is highlighted by the contradictory indications 
provided by local density analysis and Hodder and Okell's A. In this example, the local 
density CpB=3.58 indicating aggregation whereas Hodder and Okell's A,,=0.44, suggesting 
segregation of these types. Between-class nearest-neighbor analysis elucidates the actual 
situation: Rp,=0.53, whereas RB,-3.12; projectiles an: universally close to large bones, but 
not vice versa. Although Graham (1980:108) considers the asymmetry of between-class 
nearest-neighbor analysis to be a liability for his purposes. it seem here to be an important 
asset. 

A local density analysis (r=1.0) and between-class nearest-neighbor analysis of 
obviously spatially segregated tools and wood (Figure 14) indicate spatial segregation 
(C=O.OI, R e 3 . 5 1 ,  and Re1 .80 ) .  While this local density analysis indicates extreme 
segregation, Hodder and Okell's A of 0.44 indicates spatial aggregation of the same 
magnitude as is found between projectiles and large bone (Figure 6). 

Conclusions: indices of spatial patterning 

Nearest-neighbor analysis. Hodder and Okell's A, and local density analysis, with the 
extensions suggested here, may all providc uscfiul and somewhat different information 
concerning spatial patterning. Two major questions will be considered in turn. 

Nearest-neighbor analysis and local density analysis can provide global indications of 
the relative clustering of artifact classes. The only intra-class information provided by the 
computations performed for Hodder and Okell's A is the mean withinclass interpoint 
distance, which is not directly indicative of clustering. A low value of the nearest-neighbor 
coefficient does indicate clustering, it is, however, not a rcliable indicator of behaviorally 
meaningful clustering because the analysis considers only the first nearest neighbors. The 
maxima shown in local density coefficient falloff curves provide an index to the degree 
and a rough idea of the spatial scale of clustering, and the rate of falloff indirectly 
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Figure 15. Local density plot for artificial distribution of 271 points shown in Figure 4 and Mask 
Sire bone scrap (Figure 3). 

indicates the spread of the clusters, but. usually, no clear evidence for the number of 
clusters. However, local density analysis does clearly distinguish the cases with identical 
nearest-neighbor results shown in Figures 3 and 4 (Figure 15). 

SPATIAL AGGREGATION AND SEGREGATION. 

All three methods attempt to deal with this question. Although Hodder and Okell's A 
provides an absolute measure, its inclusion of all interpoint distances seems apt to cloud or 
obscure much behaviorally relevant patteming. 

As a scale-sensitive measure, local density analysis appears to have an inherent 
advantage over nearest-neighbor analysis. Local density falloff plots may indicate relative 
global patterning of different combinations of artifact classes at different spatial scales. 
While interpretation of the plots is not direct, aggregation or segregation of amfact classes 
at particular spatial scales may be highlighted. This may be a major advantage, especially 
when large numbers of artifact classes must be dealt with. 

Despite its liabilities, betwcen-class nearcst-neighbor analysis, used as a relative global 
measure of aggregation or segregation, can indicate asymmetric relationships that I suspect 
are common in archaeological data. 

PURE LOCATIONAL CLUSTERING 

Pure locational clustering refers to a method first proposed by Kintigh and Ammerman 
(1982) that, due to our unfortunate failurc to name it, came to be known as k-means 
spatial analysis. Pure locational clustering is a rigorous, numerical procedure that was 
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intended to approximate the results of an intuitive division of a point distribution into a 
set of clusters. That is, its principal objective is not to provide an index for. or test of 
spatial clustering, but to identify spatial clusters with their component points. Kintigh and 
Ammerman (see also Siegal and Roe 1986) have shown that thts quantitative procedure 
identifies intuitively plausible clustering for both clear-cut artificial data and actual 
archaeological data. 

In the simplest incarnation of pure locational clustering. a k-means non-hierarchical 
cluster analysis (Doran and Hodson 1975) is applied to the two-dimensional spatial 
coordinates of a set of points. The cluster analysis allocates each point into one of a 
specified number of clusters in a way that attempts to minimize a global goodness-of-fit 
measure, called sum-squared error (SSE). The SSE is simply the sum of the squared 
distances from each point to the center of the cluster to which it is assigned. The location 
of the center, or centroid, of a cluster is given by the mean for each dimension, e.g.. east 
and north, over all points included in the cluster. Thus, for a given division of points into 
a gven number of clusters, or cluster configuration, pure locational clustering locates the 
center of the cluster in space and identifies the points associated with that cluster. 

Ordinarily, one makes an a priori determination of the maximum number of clusters 
that could conceivably be of interest and then obtains the cluster configurations for two 
clusters, three clusters. four clusters, and so forth up to the maximum number decided 
upon. Improved results. however, may often be obtained if a number of cIusters somewhat 
larger than the maximum desired is rcquested. A plot of the SSE, expressed as a percen- 
tage of the SSE of the one-cluster solution, again the number of clusters (Figure 16) is 
used to identify the best, or "natural" clustering levels. The clustering levels of choice are 
those at which there are inflections in the SSE curve where the absolute value of the slope 
decreases. In Figure 16, for example, this is the case at three and eight clusters. The logic 
behind this criterion is that increasing the number of clusters beyond the number at which 
the inflection occurs does little to improve the goodness-of-fit, as measured by the 
reduction in the SSE, whereas fewer clusters have substantially higher SSE's. 

Both the nature and the degree of spatial patterning can be assessed through a 
comparison of the SSE plot with the SSE plots of k-means analyses of randomized data 
(Kintigh and Ammerman 1982). Data that are significantly clustered at a given number of 
clusters should have an SSE value for that number of clusters below the SSE's obtained in 
analyses of randomized data. Points that are in fact randomly disuibuted will have SSE 
values within the range of SSE's for randomized data. Not so obviously, points that are 
evenly distributed will have SSE values greatcr than those obtained for randomized data. 

Randomization is accomplished by creating a new data set with the same number of 
points wherein east (x )  and north Cy) coordinates are drawn separately and without replace- 
ment from the original data set. Randomized data sets thus derived have the same 
dismbution of values on each spatial dimension, and hence have the same mean and 
standard deviation, and the same total, or one-cluster SSE as the original data set. 

For the Mask Site. SSEs from k-means analyses of the actual and randomized data 
sets are presented in Figure 16. It can be seen that the actual distribution of points at the 
site is clustered when compared to the randomized data. and that inflections occur at the 3 
and 8 cluster levels. The composition of the clusters at the 8 cluster level is tabulated in 
Table 7. The division of the 490 points into eight clusters is shown in Figure 17. In this 
figure, the cluster number associated with a point is displayed at its location, and each 
cluster centroid is plotted as a cross. A cluster "radius", which is simply the root of the 
mean of the squared distances from each point to its cluster center, and is denoted RMS, 
is drawn around each cluster. 

Even this very simple pure locational clustering provides a rich body of relevant 
information that can figure directly in the interpretation of behavioral or formation 
processes that ultimately determined the distribution: the number of points in the clusters, 
the cluster sizes (RMS, in meters), locations (not listed in Table 7), and cluster composi- 
tion relative to some reference variable, artifact class in this case. 
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Figure 17. Mask Site pure locational clustering, plot of 8 cluster configuration. 
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It is apparent from Figure 17 and Table 7 that nearly all of the bone scrap is 
contained in four clusters (1, 2, 3, 6) immediately adjacent to the 3 major hearths 
identified by Binford. The large bone is mostly in clusters 2. 3, 7, 8, and is notably absent 
from the dense scatters of bone scrap in clusters 1 and 6. Cluster 5 in the northeast 
portion of the site has, relative to Ule other clusters, a radius that is large and an artifact 
density that is low, and is composed exclusively of tools. The wood scrap is found only in 
clusters 4 and 8, in the first case associated mainly with bone scrap, and in the second 
with projectiles. Nearly all the projectiles are in two adjacent clusters in the southwest 
portion of the site. 

Comparison of the decline in SSE values for actual and randomized data against 
number of clusters provides direct information about overall patterning at different spatial 
scales. If the distribution is shown to be clustered, hypotheses related to formation 
processes or activity areas can be examined through an inspection of the location, size, 
point density, and composition of the individual clusters. 

Pure locational clustering by artifact class 

Pure spatial clustering. as described above, has provided the foundation for a variety 
of related analyses. As with some techniques discussed earlier, one can perform the 
analysis separately for each artifact class in order to examine the individual artifact classes 
for spatial patterning (Simek and Larick 1983, Simek 1984. Simek et al. 1985, Ammerman 
et al. 1985, Simek 1987). To the extent Lhat one is interested in the distribution of 
artifacts in a particular class, this is an obvious and sensible approach. 

However, one commonly wishes to know to what extent individual artifact classes 
display similar patterning, a question not directly answered by a pure locational clustering 
of all artifact classes combined. If pure locational clustering is performed on the artifact 
classes independently, we end up needing a way to assess the correspondence of pure 
locational clustering results. Methods of comparing or interpreting pure locational cluster- 
ing configurations derived from separate analyses of artifact types remain largely intuitive 
and visual. Simek and Larick (1983) plot on a single map the cluster configurations with a 
fixed number of clusters derived from independent analyses of the artifact classes. 
Segregation of centroids and/or areas of overlap of the RMS radius circles of the different 
artifact classes are then interpreted. 

However, when artifact classes are analyzed independently, the different classes may 
not be "naturally" clustered at the same number of clusters. For example, at the Mask Site 
, wood clearly has two clusters while projectiles clearly have three basic clusters (Figure 
5). This deficiency, which was recognized by Simek and Larick in their 1983 paper, can 

Cluster N RMS Tool Projectile Wood Scrap Large Bone Bone Scrap 
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Figure 18. Mask Site pure locational clustering by type, SSE plot. 

be dealt with using the natural breakpoints seen in the SSE curves to define clustering at 
generalized spatial scales, such as low, medium, and high resolution (Ammerman er al. 
1985, Simek 1987). Thus, for the Mask Site, a consideration of low resolution clustering 
might include configurations of wood at 2 clusters, projectiles, large bone, and bone scrap 
at 3 clusters, and tools at 4 or 5 clusters (Figure 18). 

Simek (1984. 1987:46-48. Ammerman et al. 1985) proposes a higher level concept of 
"zones" that are subjectively defined by the overlap of the RMS radius circles for different 
artifact class cluster configurations at a given level of spatial resolution. The zones are 
then used as the foci of interpretive discussions. 

Homogeneity, spatial resolution, and depositional models 

Simek (1984) made an important step in linking analytical methods with theoretical 
concepts of site formation and function bascd on Binford's (1978) and Yellen's (1977) 
ethnoarchaeological observations. He proposed models of deposition identified by differing 
panerns of compositional homogeneity of the zones at different levels of spatial resolution. 
In his procedure, artifact classes are cluster-analyzed separately and cluster zones are 
identified at differing levels of spatial resolution. The zones are then ranked, separately for 
each artifact class, according to the abundance of that anifact class in that zone. Finally, 
Simek measures homogeneity by the percentage of significant rank order correlations of all 
between-class correlations. 

Koetje (1987:29-30, 43-44) has pointed out a serious defect with Simek's measure of 
homogeneity and replaces it with an alternative analytical procedure and refined deposit- 
ional models. Rather than separatcly analyze the artifact classes, Koetje clusters all artifact 
classes together, thus eliminating the subjective steps involved in the identification of 
cluster zones at different spatial scales. He uses an index of cluster homogeneity that is a 
close numerical relative of Simpson's measure of diversity, adjusted by means of Monte 
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Carlo methods for what he calls the allocative effect-the mechanical relationships among 
the sample sizes of the artifact classes, the numbers of clusters in the original population, 
and his absolute measure of homogeneity. 

For the Mask Site data, at the 8 cluster level the observed homogeneity, K', is 0.52. 
Using Koetje's method, this may be compared with the distribution of K' values computed 
for random allocations of the observed numbers of artifacts of each type to 8 clusters with 
sizes determined by the original analysis. Out of 1000 trials, the minimum K' obtained by 
a random allocation of artifacts to clusters was 0.77 and the average was 0.78, indicating 
that the observed similarity in composition of the clusters to each other, or homogeneity, 
is much lower than would be expected if, with the same total counts per type, types were 
randomly assigned to artifact locations. This suggests non-random concentrations of 
artifacts of particular classes or sets of classes. 

Identifying clustering levels to analyze 

As discussed above, the standard method (Doran and Hodson 1975) of identifying the 
clustering levels to analyze has been to identify the points at which the SSE plot markedly 
levels out  While this semi-subjective method appears satisfactory for many purposes. some 
problems remain. One problem in identifying critical clustering levels appears when a SSE 
plot shows a gradual decline with no point of marked inflection. 

An alternative approach. suggested by Gregg et al. (in press) may deal with data sets 
with no distinct inflections as well as with data sets exhibiting strong inflections. They 
suggest that for each clustering level, one should plot the difference between the percent 
SSE of the actual data against the mean percent SSE of the random runs for that number 
of clusters. Then, clustering levels with the largest differences between the actual and 
randomized data are selected. 

While I believe that there is some merit to this approach. three issues not dealt with 
in Gregg et al. (in press) need to be considered. First, they used only two random runs in 
order to calculate an average random percent SSE. In general, this will be far too few 
random runs to obtain stable differences between actual and average random SSEs. For 
example, the SSE plot shown in Figure 16 shows the results of 25 random runs. It is easy 
to see that averaging an arbitrary 2 or 3 of those random runs could give rather different 
results than one sees with 25 random runs. 

To use this strategy, one needs to do a sufficiently large number of random runs that 
random variation among these runs does not swamp the differences between the actual and 
random SSEs. An intuitive feel for the issue can be obtained by examining the spread of 
SSE values that result from doing many random runs. It can be evaluated more rigorously 
by looking at the standard deviation of the mean of the SSE obtained from the random 
runs at each clustering level, which is computed as the standard deviation of the sample of 
SSEs from the random runs divided by the square root of the number of random runs. 
The difference plot shown in Figure 19 shows the difference between the mean random 
SSE and the original data SSE and also plots this difference for plus and minus one 
standard deviation of the mean. It should be kept in mind, however, that experimentation 
has shown that a curve with a clear-cut peak does not always result from this computa- 
tion. 

Pure locational clustering, concluding remarks 

Pure locational clustering is a powerful technique for the analysis of spatial data. It is 
untroubled by boundary problems and identifies the locations, sizes, composition, and 
members of the clusters. Simek, Koetje, and Larick have shown it to be subject to many 
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Figure 19. Mask Sife pure locational clusfering, random run-data SSE difference plot. 

productive extensions. However, it docs not pmvide a unique solution, a single set of 
artifact clusters, rather it identifies clustering at several spatial scales. This is advantageous 
in that there are often sound ethnographic reasons to believe that clustering may be 
evident at more than one spatial scale. It is problematic in that we sometimes do not have 
altogether satisfactory ways to identify h e  best levels of clustering to analyze, although it 
is not clear to me to what extent this is a problem with the method and to what extent the 
problem inheres in our conceptual models and in the data themselves. 

Perhaps the most serious problem with pure locational clustering is that minimizing 
the global sum-squared e m r .  the k-means algorithm attempts to form circular clusters. 
Although in some cases it performs satisfactorily on data sets with linear, oval. and 
crescentic clusters, and centers large clusters on them, or subdivides them into several 
clusters, its internal model is, at a fundarncntal level, inconsistent with some of our 
conceptual models. This is not a call to rejcct the method, but to keep its limitations in 
mind. 

UNCONSTRAINED CLUSTERING 

WhaIlon's (1984) unconstrained clustering is a spatial analysis technique that groups 
areus of a site in terms of their proportional artifact class composition. It is intended to be 
free of constraints with respect to cluster size, shape, and density. 

As it is described by Whallon (1984. Gregg er al. in press), the first step in uncon- 
strained clustering is to transform the artifact distribution map to one in which each vertex 
of a regular grid across the site is assigned a vector of smoothed densities of the artifact 
classes around that point. This is accomplished by centering a circular template (whose 
radius is the grid interval) at each grid vertex and calculating the absolute density of 
points of each type within the template. Because each template. in part, overlaps the 
templates applied to the 8 adjacent veniccs, the densities are smoothed. From this grid of 
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smoothed densities, a contour map of 
artifact densities can be plotted, although 
this is not essential to unconstrained clus- 
tering. 

Then, smoothed absolute densities are 
calculated for each original artifact loca- 
tion by interpolation, weighted by inverse 
squared distance, from the nearest grid 
points. In the next step, the vector of 
absolute densities at each artifact location 
is converted to a vector of proportional 
densities, i.e., the sum of the proportional, 
or relative, densities at each point is set to 
1 .o. 

Fmally these vectors, representing rela- 
tive densities of the artifact classes in the 
neighborhood of each artifact are subjected 
to a 'luster analysis. The method in Figure 20. Lmconswained clustering circular tem- 
Whallon (1984) is Ward's hierarchical plate overlap. 
clustering method. Based on the behavior 
of a clustering criterion. one or more 
clustering levels is selected for examination and the cluster number associated with each 
artifact location is plotted on a map. Spatial groupings of points belonging to the same 
clusters can then be identified by inspection and interpreted using descriptive statistics of 
the cluster analysis variables, e.g., the means and standard deviations of the relative den- 
sities of the artifact classes, calculated separately for the points included in each cluster. 
Whallon (1984) presents an unconstrained cluster analysis of the Mask Site data using 
both point-provenience and grid-count data and shows that these analyses lead to generally 
appropriate interpretations of the known elhnoarchaeological record. 

As Whallon makes clear, unconstrained clustering is more an analyucal strategy rather 
than a specific method. Within this general strategy, a variety of appropriate analytical 
decisions might be made concerning how to smooth and interpolate the densities, whether 
to standardize the data, the method used to cluster the density vectors, the clustering levels 
to analyze, or even the use of absolute rather than relative densities. Whallon also notes 
that the approach can be extended to grid data. often with little loss of resolution In that 
case, the aggregation by grid unit effects a spatial smoothing of the densities. 

Moving templates 

While I believe unconstrained clustering to bc a productive strategy for spatial 
analysis, some technical details of consequence have not yet received adequate consider- 
ation. Whallon's moving circular template is a case in point. A circle s e e m  a reasonable 
shape, and as the template moves from vertex to vertex. it  does indeed smooth the data by 
including each artifact in the domain of more than one template. However, as Susan Gregg 
has pointed out, it does this in a biased fashion (Gregg et al. in press). 

Figure 20 shows the portions of h e  nine templates that impinge on any two-by-two 
unit square. The four templates that impinge on the upper left one-by-one unit square are 
hatched different ways, showing that some areas are sampled by four templates, some are 
sampled by three, and other areas are sampled only twice. Thus, some artifacts will count 
twice as much as others in the density calculations. In sparse portions areas of a distribu- 
tion. it seems likely that this effect may bc sufficienlly important to affect interpretations. 
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A painful way to evaluate this phenomenon would be to move the origin of the 
smoothing grid somewhat and repeat the analysis. Pursuing this general strategy, perhaps a 
better solution would be to use a 2 x 2 unit square template to derive a density for the 
grid vertex at its center, in this way each artifact would be counted exactly 4 times. As 
will be seen below, switching to an analysis based on grid units, either unsmoothed or 
smoothed, eliminates the circular template problem and has some other theoretical ad- 
vantages. 

Relative densities in areas of low absolute density 

Low density areas present a serious problem for the calculations of relative densities. 
This is easiest to see for the grid-count variant of unconstrained clustering. In grid-based 
unconstrained clustering, counts of the artifact classes are accumulated for each grid unit. 
These counts are then converted to proportions, or equivalently, to percentages. If a total 
grid unit count is relatively large, say, 20 or more, this is probably a reasonable step, as 
each artifact accounts for 5% or less. However, if only one or a few items are represented 
in the square, a single artifact may account for 20% 33% 50%. or as much as 100% in 
the vector of percentages. 

For the typical real-world case, in which both low and moderate to high absolute 
densities are found on a site, this may present a serious problem for the subsequent step 
of cluster-analyzing the vectors of proportions. Here, the Euclidean distance between 
vectors of proportions used by the cluster analysis will often not yield a satisfactory 
measure of similarity between vectors because very small variation in absolute numbers of 
artifacts will have very large effects on the analysis. If areas that have low total counts 
also have a variety of artifact classes, single artifacts within low density grid units will 
have an enormous impact on the assignment of squares to individual clusters, and a very 
small total number of dispersed artifacts may significantly influence the overall cluster 
configurations obtained. 

This is just as serious a concern for the standard point-based technique where the 
effect is only disguised by the additional calculations involved in smoothing and interpola- 
tion. Ultimately, the interpolated relative densilies for sparse areas are still based on small 
total artifact counts. In this case, the circular template problem is particularly important, in 
that an artifact that lies in an area that is sampled 4 times by the smoothing algorithm will 
effect the relative density vector much more than an artifact that may be extremely close 
but is only counted twice. 

Two obvious methods can be used together to alleviate this problem. First, one can 
exclude vectors for the point locations or grid units that are based on counts below some 
threshold. Second, one can expand the grid unit size or scale of smoothing so that larger 
total counts are involved in the computation of the proportions. Clearly, this involves a 
three-way tradeoff among spatial resolution, which varies with the grid unit size or 
smoothing scale, comprehensiveness, the inclusion or exclusion of units or points from the 
analysis, and robustness of the results, which vary with the use of proportions based on 
small counts. 

A local density-based variant of unconstrained clustering 

As Whallon indicates in his original article, the objective of the elaborate process of 
the smoothing and interpolation of the densities is to derive an estimate of the "... local 
density of any type of item at any specific point ..." (1984946). Such a local density 
estimate can be derived in a way that is more direct and, I believe, theoretically preferable 
to Whallon's proposed procedure. This estimate can easily be acquired as a by-product of 
local density analysis computations. 
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Figure 21. Mask Site unconstrained clllrtering using l m  radius local density. SSE plot. 

The first step is to pick a radius for the neighborhood around each point on the basis 
of which the local densities are computed. Exactly as is done in local density analysis. 
each point is examined in turn and the count of points of each tn>e within the fixed 
radius of the subject point is accumulated. Division of each count by the area of the 
circular neighborhood yields a vector of absolute density; division of each count by the 
total count of points in the circle yields a vector of relative densities. 

This approach avoids the uneven sampling problem of the moving circular template, 
obviates the arbitrary aspect of gnd placement. and effects a smoothing whose scale is 
perfectly clear-cut-the radius of the neighborhood. Points with a total count less than 
some threshold can easily be dropped from the analysis if desired. 

This variant of unconstrained clustering was applied to the Mask Site, for a one meter 
radius neighborhood around all points, using a k-means clustering algorithm on standard- 
ized variables. The SSE plot (Figure 21) suggests examination of the 6 and 11 cluster 
levels. Results at the 6 cluster level are shown in Figure 22 and Table 8. It can be seen 

TABLE 8. h4@ANS AND STANDARD DEVIATIONS IQR UNCONSTRAINED CLUSTERIN0 OF T I E  MASK SITE WITH A 1~ 
NEIGHBORHOOD RADNS. T11e PRIMARY COMFQNENT OF EACH a u m  m BOLDFAE; SECONDARY COMPONEMS 

IN Irma. 

Cluster N Tool Projectile Wood Scrap Large Bone Bone Scrap 
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Figure 22 .  Mask Site unconstrained clustering using lm radius local density, 6 cluster configuration 
plot. 

that h s  analysis produces results quite similar to Whallon's seven cluster solution, in spite 
of the fact that the details of the analysis were quite different. An analysis in which 
neighborhoods with fewer than five points were dropped yielded similar results. However, 
this analysis makes clear that large bone is more strongly associated with the northeastern 
and southwestern hearth areas than the southeastern one. 

According to Binford, bone scrap was dropped as individuals sat around the three 
major hearths. Points in cluster 1, dominated by bone scrap, surround each of the three 
major hearths. Larger bone elements were tossed over the shoulders of sitting individuals. 
The points in cluster 6, representing bone scrap associated with large bones, are associated 
with each major hearLh, but are more distant than the cluster 1 points. The two activity- 
oriented clusters of wood scrap (cluster 5) and projectile components (cluster 4) are 
identified. Isolated tools (cluster 3) are on the periphery of the site, while t h e  pieces of 
large bone are essentially isolated and form cluster 2. 

Unrmoothed grid-based unconstrained clustering 

An unsmoothed grid-based analysis of a 0.5m x 0.5m grid, with a minimum grid unit 
count of 1, using k-means clustering on standardized variables shows much the same 
patterning as the local-density analysis, with a few notable differences. The SSE plot as 
well as the random mean difference plot (Figure 23) clearly indicates that the 5 cluster 
solution should be examined (Figure 24, Table 9). In this plot the bone-scrap dominated 
cluster (1) still dominates the area around each major hearth; the projectile (4) and wood 
scrap (2) clusters are still clear, and the isolated tools (cluster 5) still show up at the 
edges of the site. 
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Figure 23. Mask Sire unconstrained clustering using l m  unsmoothed grid, random run-&a SSE 
difference plot. 
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Figure 24.  Mask Site unconstrained clustering using l m  unsmothed grid. 5 cluster configuration - 
plot. 
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However, in the grid-based analysis, it is more evident that the large bone (cluster 3) 
js scattered at some distance from the hearths than in the artifact-based analysis. Also in 
this analysis the clusters of tools in the interior of the site appear more clearly than they 
did in the point-based analyses. A grid-based analysis with a minimum grid count of five 
produced similar results. 

Perhaps paradoxically, in this case, the grid-based approach yielded results more 
directly related to the observed behavior than artifact-based approaches at similar levels of 
clustering. It seems to me that there are some subtle but important advantages to an 
unsmoothed grid-based approach. Perhaps most important is that it removes the spatial 
autocorrelative effect introduced by smoothing, of whatever son, in all point-based or 
smoothed-grid approaches. 

In point-based approaches, the compositional vectors of points that are in the same 
neighborhood with respect to the smoothing procedure are not independent of one another. 
They are mathematically related in a way that guarantees that points that are relatively 
close together will generally end up in the same cluster. Thus, the patchiness of the 
clusters evident in plots like that shown in Figure 22 is in part a mechanical effect not an 
empirical result. This means that, for point-based approaches, only the appearance of 
multiple patches of a cluster in similar contexts but different areas of the site can be 
considered to be an clear sign of spatial patterning. 

In contrast, when using an unsmoothed grid each artifact is counted only once, and 
the composition vectors associated with each grid unit are mathematically independent of 
each other. Thus, the appearance of adjacent grid units assigned to the same cluster 
indicates spatial patterning that cannot be a result of smoothing effects, and, as a conse- 
quence, leads to a stronger interpretation. In effect, use of an unsmoothed grid removes an 
important spatial constraint from artifact-based unconstrained clustering. 

The descriptive statistics are also subject to a slightly cleaner interpretation in grid- 
based clustering of h s  sort. For example, from Table 9 one can conclude that of the 126 
grid units (31.5m2) that contain any artifacts, the 63 (15.75m2) that form cluster 1 have an 
average of 95% bone scrap, 3% tools, and 2% large bone. An additional advantage is that 
the grid-based approach is usually much less computationally demanding than point-based 
approaches. Using k-means clustering, each run of the artifact-based approach took about 
10 times the computation time of a single run of the half-meter grid analysis. A final 
procedural point about grid-based unconstrained clustering is that empty grid squares can 
be dropped from the analysis, saving computational energy with no loss of interpretive 
information. 

Unconstrained clustering, concluding remarks 

Unconstrained clustering, as a family of techniques, is a powerful tool for spatial 
analysis that is complementary to pure locational clustering (Gregg et al. in press). 

TABLE 9. ~ A N s  AND STANDARD DEVIATIONS R 3 R  UNCONSTRAINED CLUSTWUNO OF T I E  MASK SIT@ WrrH AN 

UNSMOOTITED, 0 . 5 ~  X 0.5~ GRID. PRIMARY COMPONFA7 OF EACll CLUSTER IN BOLDFACE; SECONDARY 

C O M P O W S  IN lTALlCS. 

Cluster N Tool Projectile Wood Scrap Large Bone Bone Scrap 
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Whereas pure locational clustering focuses on anifact density and location, unconstrained 
clustering focuses on class composition of areas of a site without regard to density. 

Unconstrained clustering is well-suited for the examination of activity-based and many 
other behavioral/depositional models. As Whallon has pointed out, one outstanding problem 
in using this method-and probably all olhers-with activity area models is in recognizing 
overlap of the areas. I do not believe that Fourier-based methods (Graham 1980, Carr 
1987) have been shown to deal adequately with this problem in practical cases, and see no 
unequivocal solution for it. However, when using unconstrained clustering, a zone with a 
partiai overlap of activities can sometimes be seen in solutions with larger numbers of 
clusters by the division of the zones into "pure" and various gradations of "mixed" 
clusters as indicated by intermediate compositions in spatially adjacent clusters. 

As with other methods, one must keep the limitations in mind. It is my sense that 
unsmoothed grid-based procedures have important advantages and that local density 
neighborhood densities are preferable to interpolated, smoothed densities in artifact-oriented 
analyses. With unconstrained clustering, several analytical steps are involved and many 
decisions with important analytical consequences must be carefully thought out. 

CONCLUSIONS 

The state of the art of intrasite spatial analysis in archaeology represents a constant 
interplay among questions asked by archaeologists, the quality of available data. models of 
behavior and deposition, and accessible methods. In recent years there have been important 
advances in all these areas. Further, I believe that promising directions for innovative 
research seem relatively clear. 

For some kinds of research, the collection of highly precise provenience data has been 
the norm for many years; in others, standards for the collection of provenience information 
are rising. For purposes of spatial analysis, current and future excavations are less likely to 
be troubled by the precision of the provenience data than they are to be impeded by 
limited spatial extent of excavations. dictated by the time-consuming nature of modem 
recovery methods. 

Until a few years ago, the model employed by quantitative techniques for comparison 
with actual data was a simple random distribution of points, and a statistically significant 
non-randomness was often interpreted as behaviorally significant paneming. Recently, 
considerable attention has been paid to the development of models of behavior that result 
in the spatial distributions we are left to deal with. Both ethnoarchaeological (e.g., Binford 
1978; DeBoer and Lathrap 1979; Kent 1984, 1987; Yellen 1977) and archaeological (e.g., 
Boone 1987; Fletcher 1984; Leroi-Gourhan and Brezillon 1972; Kroll and Isaac 1984) 
studies have contributcd to the devclopmcnt of important behavioral models that can be 
employed in quantitative spatial analysis. 

A great number of papers have addressed the methodological issues. In addition to 
those cited here. Hietala (1984') and Carr (1984) provide lengthy reviews. Some of the 
more recent methods were developed explicitly to deal with the lack of fit between 
realistic models of behavior ,and quantitadvc methods (Kintigh and Ammerman 1982; 
Sirnek 1984; Whallon 1984; Carr 1985; Koetje 1987). In addition, I have attempted to 
show that methods like nearest-neighbor analysis can be adapted in such a way that they 
can be informative with respect to more contemporary concerns. I think there is reason to 
expect relatively rapid progress on methodological issues because as sophisticated spatial 
analysis techniques become more widely available on microcomputers, they become more 
widely used and better understood. 

As with other concerns of quantitative archaeology, it seems to me that too often our 
methods have been allowed to dictate our questions rather than the other way around 
(Kintigh 1987). However, over the last several years, we have greatly refined our questions 
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and, as has been shown here, Monte Carlo techniques can be used with existing pro- 
cedures to obtain answers to reformulated, and more relevant questions. We are now 
concerned with local patterning and multiple levels of patterning, as well as with global 
patterning. Assessing the fit between model and data remains a major topic. A healthy 
concern with the validation of results currently is being coupled with inductive, pattern 
searching techniques, which I believe to be essential for spatial analysis in archaeology. 
The problem of mixing or  overlap of deposit types is perhaps the outstanding issue before 
us. There is much work to be done, but much progress has been made. 
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